
Phase Jump Due to Partial Reflection of Irregular Water Waves 
at Steep Slopes 

BY FRITZ BÜSCHING 

URN:NBN:DE:0066-20100827 

S u m m a r y 

A wave of transmission originating at the landward side of the initial breaking wave requires the simultaneous formation of a reflected 
wave at the seaward side. According to the conservation of momentum the water level deflection of the reflected wave must be negative. 
Superimposition of incident and reflected waves results in the formation of a partial standing wave (partial clapotis) comprising of a phase jump. 

For the investigation of partial standing waves at steep sloping structures a special analyzing technique had been adopted. Previous results 
on the phenomenon of anomalous dispersion and on frequency dependent reflections are summarized and are supplemented by evaluations on the 
existence of phase jumps between incident and reflected waves: The nodes of superimposing  partial clapotis component waves nearest to a smooth 
structure are very close to the point of intersection (IP), where the still water level intersects the face of the structure. Such a partial reflection, 
assigned by a phase jump of Δφ ≈ 180°, leads to the definition of a negative coefficient of reflection Cr = f(Hr/Hi, Δφ) < 0, implying the effect 
that a wave crest is reflected by a wave trough and vice versa. Structured (rough) surfaces (like hollow revetments or big hollow blocks) cause 
phase differences Δφ <180° between incident and reflected waves together with reflection coefficients ranging between Cr < +1,0  and Cr >-1,0. 
Minimal magnitudes of reflection coefficients Cr = f(Hr/Hi, Δφ) are found for phase differences Δφ ≈ 90°. 

Z u s a m m e n f a s s u n g 

Eine im Verlauf des Wellenbrechvorganges landseitig entstehende Transmissionswelle mit der Phasengeschwindigkeit  
ct < ci erfordert aus Gründen der Impulserhaltung seeseitig die gleichzeitige Bildung einer Reflexionswelle mit örtlich 
negativer Wasserspiegelauslenkung. Die Überlagerung der anlaufenden mit der reflektierten Welle ergibt eine partielle 
Clapotis mit Phasensprung. 

Für die Untersuchung partiell stehender Wellen an steilen Uferböschungen im Modellmaßstab 1:5 wurde auf 
entsprechende Messungen eine spezielle spektrale Analysetechnik angewandt. Auf dieser Grundlage gewonnene frühere 
Ergebnisse zum Phänomen anomaler Dispersion und  frequenzabhängiger Reflexion werden zusammengefasst und durch 
neue Auswertungen im Hinblick auf das Vorliegen von Phasensprüngen ergänzt: Die bauwerksnahsten imperfekten 
Knoten eines Kollektivs partiell stehender Wellen (Partialwellen) vor glatten Böschungen befinden sich in unmittelbarer 
Nähe des Schnittpunktes, den der Ruhewasserspiegel mit der Böschungsoberfläche bildet. Eine dementsprechende 
partielle Reflexion mit einem Phasensprung Δφ≈180° führt zur Definition  negativer Reflexionskoeffizienten 
Cr = f(Hr/Hi, Δφ) < 0 mit der Folge, dass ein Wellenberg als Wellental reflektiert wird und umgekehrt.  

Strukturierte (raue) Oberflächen (wie Hohldeckwerke einerseits und großvolumige Hohlformkörper andererseits) 
bewirken Phasendifferenzen Δφ <180° zwischen anlaufenden und reflektierten Wellen mit Reflexionskoeffizienten 
zwischen Cr < + 1,0  und Cr >-1,0.  

Minimale Beträge des Reflexionskoeffizienten Cr = f(Hr/Hi, Δφ) ergeben sich für die Phasendifferenzen Δφ ≈ 90°.  
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1.   I n t r o d u c t i o n 

In the 1990ies numerous model investigations had been carried out in a wave tank at Bielefeld 
University of Applied Sciences (BUAS) in order to demonstrate the hydraulic efficiency of 
hollow revetment elements (Hollow Cubes) using a model scale 1:5, see Fig.1. In doing so the 
author started from the perception that the mass of water in front of a sloping structure can be 
regarded as an oscillating continuum, characterized by different natural frequencies, 
according to the actual geometric boundaries.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 01: Plunging breaker at quasi smooth reference revetment slope (left) and  
collapsing breaker at hollow slope structure (right) 

 
In this arrangement the source of excitation is realised in the waves coming from the sea and 
the different degrees of freedom are represented – on the one hand - by the reflections 
associated with a set of partial standing waves and - on the other hand – by the washing 
movement due to run-up and run-down of broken waves on the slope face [1]. Actually it 
could be shown that the appropriate interferences on the washing movements not only have 
the effect of reducing the wave run-up but also reducing the breaker heights and changing the 
breaker type and its relative position on the slope face. Contrary to that the present 
contribution is oriented a priori on the partial clapotis, namely on the phase difference 
between incident and reflected wave occurring in the course of partial reflection at sloping 
structures. This subject is important, because erosions at the slope face and scouring at the 
foot of coastal structures are due to the interaction of incident and reflected waves. Although 
the effect of phase shifting had yet been presumed by Schoemaker und Thijsse (1949) [2], 
relatively little attention had been paid on it during the years 1980 to 2000, when the relevant 
studies on reflection coefficients Cr had been carried out. Sutherland and O’Donoghue (1998) 
[4] analyzed the state of knowledge from about 20 references complimenting it by their own 
measurements. Using a large experimental data set involving normally incident and obliquely 
incident regular and irregular waves, they show that the phase shift γ  is uniquely determined 
by a nondimensional number χ3 defined by structure slope tanα = 1:m, water depth at the 
structure toe dt, wave period T, and angle of incidence θ:  
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Accordingly neither the wave height nor energy dissipation processes should influence the 
phase shift γ.  
In total the authors give 2 theoretical linear functions γ = f(χ) for normal wave incidence and  
5 experimental power functions  γ = f(χ) and γ = f(χ3) respectively applying to 2- and 3-
dimensional regular and irregular waves. For instance that one for 3-dimensional irregular 
waves reads as follows: 

 
41,1

313.11 χπγ ⋅⋅−=         (2) 
 

Here the point of origin is x = 0 at the structure toe with x increasing toward the shore. 
For the time being, however, relations to the above findings can not be made, because in the 
present assessment  
 

• the point IP of the still water level intersecting the slope face is selected as the point of 
reference and thus the phase shift here is Δφ ≠ γ ,  

• the investigations are restricted to the 2-dimesional retro-reflection from 2 steep slopes 
only, 

• contrary to above presumptions essential importance is attached to the interactions 
between phase shift and energy dissipation at wave breaking and  

• absorption at sloping structures is assumed to be not only represented by a smaller 
reflecting wave height Hr < Hi but also is accompanied by a modified phase shift 
between incident and reflected wave. 

 
The summary of the results may be anticipated yet at this point as follows:  
At steep plane slopes wave breaking not only causes dissipation and reflection but 
transmission also.  
Accordingly a phenomenological representation can be described as follows: 
In the course of the dissipative wave breaking process a wave of transmission evolves 
from the initial incident wave at the landward side, while a reflected wave is produced at 
the seaward side at the same time.  
The wave of transmission is characterized by a wave height Ht < Hi and phase velocity 
ct<ci , and the reflected wave height is Hr < Hi . 
In this process it is essential that due to conservation of momentum the positive water 
level deflection of the transmitted wave puls postulates locally a negative water level 
deflection at the reflecting wave.  Hence, superimposition of incident and reflected waves 
results in a partially standing wave comprising of a phase jump. The kinematic of the 
broken wave near IP initiated by a plunging breaker in this case resembles the particle 
movement in an imperfect partial clapotis node. 
 

2.  M e t h o d 
 
The investigations are based on measurements which had been carried out in the BUAS wave 
tank. As the method used for spectral data analysis may not be well-established, in the 
following the results achieved will be summarized with respect to the topic of reflection at 
inclined coastal structures with slopes 1:m = 1:3 and 1:2.  
Particular attention is paid, however, on the process of reflection at a smooth inclined slope, 
which had been used as a reference slope for the respective investigations, see Fig. 2.  
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Fig. 02: Scheme of BUAS Wave Tank (not to scale). 
 

Due to the water depth conditions to be considered in the wave flume, an input wave spectrum 
was used similar to those measured near the breaker zone of Sylt Island/North Sea [5]. Hence 
in the model input spectrum maximum energy densities are concentrated in the frequency 
range 0.48 Hz ≤ f ≤ 0.62Hz. 
The actual evaluations refer to the boundary conditions of a smooth slope inclined  1:3 and a 
rigid flap type wave generator. In order to favour the development of high energetic 
movements in the tank (with wave heights of about 0.3m), in this case, no precautions had 
been made to suppress re-reflection from the wave maker. The tests had been carried out 
comprising a rather big number of 91 wave probe stations positioned in front of the slope 
from station 0.79m to 9.79m, equally spaced 10cm, nearly all over the total length of the wave 
tank. The signals from the wave probes were recorded quasi synchronously and were 
processed by spectrum analyses confined to a total frequency range 0.03263 ≤ f ≤ 1.3997 Hz.  

 
Fig. 03. Synchronously measured energy spectra at stations 0.79m to 1.79m distant from 

IP. In front of a Hollow Revetment (left) and a Plane Revetment Structure (right) at 
Slopes 1:3. 
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As an example Fig.03 shows plots of spectra synchronously taken at 6 different gage 
locations, spaced 20cm, in front of the hollow slope and the plane slope respectively. Actually 
those composite energy spectra (containing information of incident waves, reflected waves 
and re-reflected waves) demonstrate the changes of energy content along the slope in the 
range extending from the slope toe (station 1.79m) to the zone of maximum breaker instability 
(stations 1.19m to 0.79m).  
Due to the fact that the area included in each of the energy spectra (integrated spectrum area, 
IA) is proportional to the potential energy at any measuring station, such values were used in 
order to describe the distribution of the energy along the wave flume with reference to 
different frequency ranges. 
 In the 3 diagrams attached (Fig.04 to Fig.06) the values of all the integrated spectra IA are 
plotted along with the gauge station distance from the slope face, i.e., from the point IP of the 
still water level (SWL) intersecting the slope, which is also sketched in relation to the probe 
stations at the bottom of Fig.04.  
 

 
 

Fig. 04: Distribution of spectral energy within the frequency range 0.03 ≤ f ≤ 1.4 Hz 
documenting the existence of a partial clapotis  

in front of the smooth slope 1:3 (red curve). 
 

 With respect to the total analyzed frequency range 0.0326Hz ≤ f ≤ 1.3997Hz a periodic 
feature can be noticed yet in the upper red curve, which belongs to the potential energy data 
calculated for the smooth sloping structure in Fig.4. 
This feature apparently confirms the existence of a partial standing wave, because the 
potential energy of such a wave – contrary to a progressive wave – keeps on location. Its 
wave length of about LC = 3.65m for instance can be taken from the graph to be equal to the 
distance between the first and third minimum of energy. 
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Although there are some disturbances to be seen in the plot, it will be shown that conclusions 
of good quality can be drawn from that data, provided that the total frequency range is 
subdivided into a number of smaller frequency ranges and the higher noise frequencies  
(f > 0.8Hz) are discarded. 
 First of all in Fig.05 a respective presentation of all the frequency components separately 
(82 spaced Δf = 0.00543 Hz) is shown for the frequency range 0.4015Hz ≤ f ≤ 0.8409 Hz. The 
essential phenomenon to be seen from this graph consists in the fact that obviously there are  
 

 
Fig. 05: Energy lines of all the components in the frequency range 

0.4015Hz ≤ f ≤ 0.8409 Hz . 
 

lines of energy, possessing similar energy distributions in the length expansion, relating to the 
distance from the sloping structure (point IP); i.e., they have nearly same distances between 
neighbouring energy minima or neighbouring energy maxima respectively and nearly same 
phase angles too. 
In the course of further data treatment the energy components of such similar neighbouring 
frequency ranges had been summed up reducing the number of curves. Thus in the frequency 
range of 0.4015Hz ≤ f ≤ 0.8030Hz, see Fig.06, 12 curves were found, representing different 
component frequency ranges. Hence, the potential energy of the partial clapotis, documented 
in Fig.04, can be recognized approximately as the resulting energy from such 12 
superimposing partial clapotis waves existing in the wave tank at the same time. In order to 
distinguish the resultant partial clapotis from its components in the following the latter shall 
be named shortly “partial waves”.  
The general properties of such partial waves can be derived from their energy distribution in 
the length expansion (energy line) as shown in Fig.07. 
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Fig. 06: Energy content of 12 partial standing waves  

 

  
 

Fig. 07: Sketch of partial standing wave at a slope. 

 7



 
 In the lower part of that graph it can be seen that the absolute maximum of energy (denoted 
EmaxII) appears closest to the slope and the seaward maxima EmaxIII, EmaxIV …decrease in 
magnitude with the distance increasing from the slope. Vice versa with respect to the curve 
minima the energy increases with distance from the slope in the order EminII, EminIII, EminIV … 
Obviously such features correspond rather well to the water level envelopes of a partial 
standing wave attenuating with distance from IP, as shown in the upper part of Fig.07. 
Differing from the periodical potential energy function of a perfect standing wave (clapotis), 
at which the nodes are related to zero values and the loops to maximum values, obviously at 
partial standing waves the respective extreme values distinctively deviate from that periodical 
function. This feature will be discussed further below in chapter 4 with reference to the 
calculation of reflection coefficients Cr.  
Moreover such deviations allow phenomenological explanations with respect to the water 
particle kinematics as indicated in the graph: 
The particle movements at phases of the loops may be approximated by ellipses possessing 
bigger vertical principle axis and those at the node phases by ellipses possessing bigger 
horizontal principle axis. The orbital motions of partial waves approaching the slope may be 
described by increasing vertical ellipse axis at the loops and decreasing vertical ellipse axis at 
the nodes.  
In the following, previous results are summarized based on the existence of the above energy 
lines and their properties, on which also will be referred to in the remainder of this paper.  
 
 

3. R e s o n a n t  b a s i n  o s c i l l a t i o n s  a n d  a n o m a l o u s  d i s p e r s i o n  o f  
f r e q u e n c y  c o m p o n e n t s  o f  p a r t i a l  s t a n d i n g  w a v e s 

 
A comprehensive report on resonant basin oscillations in the wave tank used, is contained in 
publication [8]. Thus its appearance is due to the generation of wave sequences repeatedly 
without any precautions to suppress re-reflection from the wave maker.  

 
 

Fig.08: Component length L, phase velocities c and harmonic numbers n  
plotted with frequency. 
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The phenomenon of grouping frequency components was shown above in chapter 2. Due to 
the fact that the frequency components of the partial waves have nearly equal wave length, 
follows that there is an anomalous dispersion property within such wave packets, because the 
phase velocity according to c = L.f  increases with frequency. It is dc/df > 0.  
 
In the upper part of Fig.08 the lengths associated with the 82 energy lines, mentioned above, 
are denoted L(AD)(f) (AD = anomalous dispersion), whereas L(ND)(f) (ND = normal 
dispersion; dashed line) refers to the classical dispersion relation according to water depth  
d = 0.626 m in the wave tank. Thus, both curves can be named Length Spectra. Besides the 
mentioned (red) phase velocity spectrum c(AD)(f) also the theoretical phase velocity 
spectrum c(ND)(f), derived from 2 tanh( )g k k dω = ⋅ ⋅ ⋅ , is shown in the lower part of the 
figure. 
Especially because of the stepped structure of L(AD)(f), the author considers the 12 partial 
waves to match the different oscillatory modes of the enclosed water body in the tank. 
Hence, the combined appearance of resonance and anomalous dispersion, known from 
electromagnetic waves, might also be valid in this case. 
In order to confirm this statement the author in [8] previously considered a basin with vertical 
walls at the front end and at the rear end of a wave tank.  
By contrast in the present article, it is shown that the geometry of a basin comprising a 
vertical wall at the front end and an inclined wall at the rear end provide the appropriate 
boundary conditions for the function of harmonic numbers of basin oscillations n(f), see 
Fig.08.  
According to the statement, made in the introduction, this function is based on the existence 
of a node at the slope face and a loop at the wave maker, see Fig.09. 

 
Fig.09: The first 4 theoretical mode shapes of natural oscillations in a basin confined by 

a vertical wall at the front end and an inclined wall at the rear end. 
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Natural frequencies of a water volume in a basin comprising of a vertical wall at the front end 
and an inclined wall at the rear end can be calculated in using formula (03): 

[ ] ( )
D

cnHzf
⋅

⋅+=
4

12                                                     (3) 

where 
D = horizontal wall distance according to Fig,09,  
c = wave celerity and 
n = harmonic number. 
n = 0 denotes the fundamental oscillation and n = 1, 2, 3 ... are named first, second, third 
harmonic etc., Fig.09. 
 
Solving formula (3) with respect to harmonic numbers n[-], yields formula (04): 
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Further applying  c = L . f yields formula (5) 
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With the horizontal wall distance D = 11.638m (between IP and the hinge of the wave maker) 
in formula (4), it is evident in Fig.08 that partial waves actually occurred as harmonics  of 
ordinal numbers 4 ≤ n ≤ 9 in the wave tank. It is to be seen that the function is best for the 
partial waves with wave lengths 3.58m and 4.21m, which both carry maximum energies.  
 
 

4. R e f l e c t i o n   c o e f f i c i e n t s  of  p a r t i a l  s t a n d i n g  w a v e s  
a n d   s e l e c t i v e   r e f l e c t i o n  o f  p a r t i a l  w a v e s 

 
One of the authors previous results [9] consisted in the finding that reflection from a sloping 
structure – whether smooth or hollow – strongly depends on the frequencies contained in the 
spectrum of gravity waves. Especially the fact that the longer the frequency components, the 
more down slope they are reflected (to be seen from Fig.06), had been denoted as a kind of 
selective reflection. Such a dependency of course also can be demonstrated by using reflection 
coefficients. 
The calculation of such reflection coefficients Cr,i(f) in [3] and [9] formerly had been based on 
the structure of Healy´s formula (1953), but contrary to the sums and differences of wave 
heights in that formula, here the square roots of the energy extreme values had been used 
instead as follows: 
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ii
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Where: 
Emax,i = maximum energy of contributing components at clapotis loop i, 
Emin,i = minimum energy of contributing components at clapotis node i, 
i    =  number of clapotis loops or nodes respectively according to Fig.07. 
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Fig.10: Spectral reflection coefficients Cr,II(f) of partial waves at slopes 1:m = 1:3 

 with mean values of the respective component frequencies f. 
 

 
 Fig.11: Weighted mean reflection coefficients Cr,m(x) of total spectra with prototype 

distance from a slope 1:3.  
 
There are exemplified plots of the maximum reflection coefficients Cr,II (referring to Emax,II 
and Emin,II) to be seen in Fig.10 for smooth and hollow slopes 1:3 respectively. 
But also reflection coefficients Cr,m(x), attenuating with distance from the slope, can be 
presented, which can be useful with regard to safety considerations of ships travelling near a 
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sloping structure, for instance at the entrance of an harbour. Plots of such reflection 
coefficients Cr,m(x) are to be seen from Fig.11, representing mean values weighted with the 
energy content of component frequency ranges. Further information on that is contained in 
[9]. The advantage of the above definitions of reflection coefficients is the fact that the 
differing mean energy levels in front of the two sloping structures (see Fig.04) are also 
considered in the evaluation procedure for the reflection coefficients. In this connection it can 
be questioned, whether conventionally calculated reflection coefficients at all can deliver 
reliable estimates on wave absorption. 
Anyhow, in the present case the mean energy levels of the breaker zone close to the sloping 
structure are related roughly 1: 2/3, cf. Fig. 3 and 4. But it has to be considered here that with 
respect to the curve, valid for the smooth structure, the absolute maximum could not be 
obtained, because the water depth at stations nearer than 0.79m from IP was not sufficient for 
measurements to be made. Because this shortcoming is relevant with respect to the relative 
positioning of partial waves in front of the smooth and the hollow structure, it was necessary 
to consider additionally the results of similar investigations on the steeper slope 1:2, where 
measurements could be performed nearer to the slope also. 
 

5. R e l a t i v e   p h a s e s   o f   p a r t i a l   s t a n d i n g   w a v e s   a t   s t e e p 
   s l o p e s   a n d   r e s u l t i n g   w a v e   d e f o r m a t i o n  

 
Because of data missing in Fig.07 with respect to the breaking kinematics on the slope face, 
vague statements are allowed in this context only:  
 

• Energy decreases in upslope direction depending on the type of breaker and on the 
slope angle.  

• The breaker extends from maximum Loop_II and a location near IP. 
• Comparing particle movements on the slope to those at a vertical wall, the washing 

movement on the slope corresponds to Loop_I (directly at the vertical wall face), 
although the runup can be compared better to a broken clapotis. 

 

 
 

Fig.12: Two sets of partial clapotis of lengths L0 and Li at a vertical wall and at a  
 slope 1:m ≥ 1:3 respectively. Vertical wall: dotted lines; Smooth slope: solid lines. 
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Further statements, however, can be obtained from the relative positioning of the above set of 
partial clapotis waves (partial waves). For this purpose first of all in Fig.12 some general 
changes are shown, which occur in the case that a vertical wall is replaced by a sloping 
structure steeper than 1:3 [10]: Because of the vertical boundary missing, in those cases the 
perfect nodes convert into approximately elliptical flow lines (spiral shaped imperfect nodes), 
whose centers are located appreciably nearer to IP than L/4, 3L/4, 5L/4 ….   
This is shown here for two sets of wave lengths L0, Li at a vertical wall and at a slope 
respectively.   
In the following, evaluations at first are performed with respect to this feature on the smooth 
slope 1:3, based on the relative distances between the partial clapotis energy lines of Fig.06. 
Here the longest component partial wave energy line is selected as a reference. This can be 
identified in the graph by its EminII ≈ 0 (nearly zero) at 3m from IP. Hence this kind of 
oscillation (comprising frequencies 0.402 ≤ f ≤ 0.423Hz) actually comes rather close to a 
perfect clapotis.  
 
Pre-breaking Wave Stage 
 

 
Fig.13: Distances of partial clapotis nodes_II with reference to the longest partial wave 

of length L0 = 5.81m. 
 

 
During the process of wave deformation (at a slope) a pre-breaking wave stage obviously can 
be assigned to the position of node_II (3L/4 distant from vertical wall (IP)) of the longest 
clapotis component. In Fig.06 the respective location (of corresponding minimum energy of 
frequency components in the range 0.4015 – 0.4232 Hz) is the one mentioned above (3m from 
IP). The corresponding wave length is equal to the distance between EminII and EminIV resulting 
in approximately L0 = 5.81m. Hence, in this case (of a slope structure) the distance of the 
node_II from IP is only about 2L/4 (2.91m) instead of 3L/4 (4.36m). The distances from here 
to the nodes_II of the remaining component clapotis waves are plotted in Fig.13. 
Comparing the results with the respective phase conditions at a vertical wall (theory), it can 
be seen that those distances decrease with the component frequency increasing (wave length 
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decreasing). This means that in the pre-breaking wave stage the steepening of the resultant 
wave is due to the relative upsetting of partial clapotis component envelopes. 
 
Breaking Wave Stage 
 
Measurements could not be performed by using wave gauges on the slope face in the water 
depths region of the breaking waves, because of insufficient operational water depth. Hence, 
in Fig.06 the loops_II (maxima of energy) can be seen for the lower frequency partial wave 
only. It can, however, be reasonably assumed that at wave breaking the process of upsetting 
partial clapotis components will continue. The loops_II of all clapotis components 
superimpose in such a way that an asymmetric distribution of energy is produced and stable 
surface elevations of the resultant waves can no longer be preserved. As to be seen from 
Fig.04 the asymmetry in the energy distribution with respect to the resultant partial clapotis is 
preserved also in the seaward wave cycles. 
 
Post-breaking Wave Stage 
 

 
Fig.14: Distances of partial clapotis nodes_I with reference to the longest partial clapotis 

of length L0 = 5.81m. 
 

 
Also the nodes_I (at a distance of L/4 from the vertical wall) of course can not be seen 
directly in Fig.06. Presuming, however, that partial clapotis lengths are constant on the slope, 
the locations of nodes_I can be extrapolated in using the measured relative distances of the 
nodes_II, shown in Fig.13. Similar to Fig.13 the extrapolated relative distances of clapotis 
nodes_I with reference to those at a vertical wall (theory) are plotted in Fig.14. As the vertical 
scale is the same as in Fig.13, it is apparent that differences here are much smaller. This is 
also an indication that asymmetry changes with the shifting of clapotis components. The 
absolute clapotis_I node distances ai from IP, as defined in Fig.12, are shown in Fig.15 and 
the relative clapotis_I node distances ai/Li with reference to IP in Fig.16.  
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Fig.15: Absolute clapotis node_I distances from IP nearest to the slope face. 

 

 
Fig.16: Relative clapotis node_I distances with reference to IP. 

 
 
It can be seen that the nodes_I are shifted more in the upslope direction, the higher the partial 
clapotis frequencies are. The negative values in Fig.15 and Fig.16 are plausible, because water 
particle movements extend in the upslope direction beyond IP and thus an increasing SWL - 
well known as wave setup - must exist.  
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On the other hand the relative shifting of the nodes can also be explained by the kinematics of 
the incident waves, whose longer (lower-frequency) components are more effected by the 
boundary of the slope (at bigger water depth) than the shorter (higher-frequency) ones.  
Anyhow, a position of node_I close to the slope can be documented for any partial wave. This 
statement holds even for the maximum deviations from IP, because they are negative and thus 
on the upslope side. 
With respect to the waves resulting from the superimposition of the set of partial waves, it 
may be stated, that the breaker steepness, besides increasing wave heights, is due to 
decreasing wave lengths too. 
The shifting of the nodes by 90º (π/2) onto the slope, however, would be of elementary 
importance, because this means a phase jump of 180º between incident and reflected waves, 
cf. chapter 6. 
In contrast, extrapolating the experimental curve in Fig.16 by the multiple of the maximum 
examined wave length, would trend to the limiting value ai/Li = 0.25. Hence, extremely long 
waves actually would tend towards the status of a clapotis without a phase jump. 
Similar results had been published by the author previously in [10] and for monochromatic 
waves also in [3].  
Because of a better judgment of the above results for the smooth slope and supposed 
deviations for the hollow slope, in the following similar results on slopes 1:m = 1:2 are 
included in the analysis. The hollow structure in this case, however, is rather different from 
that of Fig.01. As to be seen from Fig. 17, in this case two layers of big hollow cubes had 
been piled up in such a way that a stepped structure is formed, see also [11 and 12].  
 

 
 

Fig.17: Sectional and cut-out views of test structure composed of “Hollow Cubes”. 
 

The results for this structure and for the respective smooth reference slope are contained in 
Fig.18. Actually the measuring procedure here was similar to that one used for the slope 1:3, 
but the method of presenting the data is different to that one used for Fig.06. 
Instead of plotting the data of any partial wave separately, in this case the energy contents of 
all partial waves, comprising different component frequency ranges, appear piled up with 
reference to the distance from IP. The energy values of each partial wave are marked by 
colors to be identified from the inset at the bottom of the graph. 
Additionally it has to be mentioned here that truncated wave sequences had been applied in 
such a way that the re-reflection effect was excluded from the analyzed data. 
Provided that signal noise of frequencies f > 0.725 Hz is disregarded, (i.e. the upper yellow-
orange areas in both plots) at the smooth slope partial waves can very well be identified by 
their extreme values of energy representing loops and nodes respectively.1 Moreover the 
“selective reflection effect” mentioned above, is very distinct: The lower the frequency 

                                                 
1 The distinct increase of energy within the frequency range 0.6 ≤ f ≤ 0.68125Hz at station 5 may be traced back to 
unknown local wave breaking features not to be discussed here.   
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components of a partial wave the more down-slope they are reflected with the consequence of 
the relative shifting to be seen in the graph. Thus actually the nodes_I appear rather close to 
IP except for the longest two partial waves comprising the frequency range 0<f<0.375Hz. It 
should be mentioned here that at slopes 1:2 measurements could be performed yet close to IP. 

 

 
Fig.18: Smooth slope: Evidence of partial waves with extreme values of energy 

documenting distinct loops and nodes.  
Hollow Structure: Evidence of partial waves with much less energy.  

Distinct phase differences between respective partial waves at both slopes. 
 

Apparently at the hollow structure the loops and nodes are much less distinct, but still can be 
identified. Comparing, however, the energy contents of the respective partial waves in front of 
the two slopes, the differences not only of the magnitudes but also of the phases are 
impressive. The distances of corresponding partial wave phases can be taken from the graph. 
By way of example with regard to the frequency range 0.4875Hz ≤ f ≤ 0.51875Hz, whose 
loops and nodes in the graph are marked by arrows, the distance of corresponding phase 
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points is 0.70m. Applying 0.95m as the distance between node and loop (also taken from the 
graph) the phase difference can easily be figured out to be Δψ = 66°.2  
 
With regard to reflection coefficients (to be further analyzed in chapter 7), estimates 
depending on frequency, calculated in using the above method, are shown yet in  Fig.19.  
Hence, in the frequency range 0.36Hz ≤ f ≤ 0.7Hz there are reflection coefficients 
0.5 ≤ Cr ≤ 0.85 attached to the smooth slope and 0.1 ≤ Cr ≤ 0.3 to the hollow structure. 

 
Fig.19: Spectral reflection coefficients Cr,II(f) of partial waves at slopes 1:m = 1:2 plotted 

with the mean values of corresponding frequency ranges. 
 
Similar to Fig.10 reflection coefficients for the smooth slope decrease with frequency 
increasing. Contrary the trend of coefficients for the hollow structure is rather neutral.  
In contrast to the smooth slope, above the hollow structure, there is a loop documented 
between stations 5 and 0 due to increasing energy, see Fig.18. This increase is, however, 
combined with a shifting of energy from lower frequencies 0 < f < 0.46875Hz to higher 
frequencies 0.4875Hz < f < 0.725Hz and is in accordance with the visual observation of high 
turbulent flow into and out of the hollow structure respectively.  
Thus it can be supposed that besides energy dissipation at the hollow structure, also the 
magnitude of the observed phase difference is responsible for the very low reflection 
coefficients to be found. By contrast, at a slope 1:3 a comparable phase difference is only 
Δψ = 18° < 66° attached to a similar frequency range 0.49Hz ≤ f ≤ 0.54Hz. Although the 
reduction of reflection coefficients is impressive for the hollow revetment 1:3 (Fig.10) also, 
the collapsing breaker occurring at that structure is rather different from surf characteristics at 
the hollow structure inclined 1:2. 
 
 
 
 
                                                 
2 In the same frequency range, the minimum energy value at station 6 may be traced back to the impermeable in-
place step to be seen from Fig.17. This can also not be discussed here. 
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6.   F u r t h e r   c o n s i d e r a t i o n s   o n   t h e   o c c u r r e n c e   o f     a      
p h a s e    j u m p   b e t w e e n   i n c i d e n t   a n d   r e f l e c t e d   w a v e s.  

 
In the 1990ies the author had already mentioned the interaction process between the washing 
movement on the slope face and the particle movement, induced by the incident waves, with 
the consequence of a possible resonance between them [1]. Naturally for this purpose not only 
the matching of the frequencies is important but also the relative phases of both movements. 
In this connection special relevance may be attached to the position of the partial clapotis in 
front of the sloping structure. In the following it will be shown that the position of the later 
depends on the phase difference between incident and reflected wave.  
In case that - differing from the conventional treatment - the reflected wave is assigned not 
only a wave height Hr < Hi but also a different phase φ with respect to the incident wave, an 
appropriate reflection coefficient Cr = f(Hr/Hi, Δφ) can be specified for cosine waves by way 
of a parametric representation.3 In doing so the function Cr = f(Δφ) had been calculated for 
parameters 0.1 ≤ Hr/Hi ≤ 1.0, where individual values for given phase differences Δφ come 
from Healy´s formula (1953).    
 

minmax

minmax

HH
HH

rC
+
−

=   where ri HHH +=max   and ri HHH −=min   (7) 

 
For the theoretical case of two opposing cosine waves of equal wave length (or period) an 
example of the calculation scheme for the parameter Hr/Hi = 0.7 and phase difference 
Δφ = π/4 is contained in Fig.20.  

 
 

Fig.20: Calculation scheme for reflection coefficient Cr = f(Hr/Hi = 0.7; Δφ=π/4)  
 
As shown in the graph the phase difference Δφ produces a displacement of the partial clapotis, 
whose loops and nodes are characterized by the extreme values of the functions Hmax and 

                                                 
3 A complex reflection coefficient may be formulated alternatively.  
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Hmin. Additional consideration of the phase distance Δφ in this case causes a change of the 
reflection coefficient from Cr = f(Hr/Hi) = 0.7  to  Cr = f(Hr/Hi, Δφ) = 0.377. 
The entirety of reflection coefficients Cr = f(Hr/Hi, Δφ) for parameters 0.1 ≤ Hr/Hi ≤ 1.0  and  
phase differences 0° ≤ Δφ ≤ 180° is plotted in Fig. 21. Outside this range reflection 
coefficients can be found by mirroring the data at the axis Δφ = 0° and at the axis at 
Δφ = 180° respectively. 
It should be noted here that due to the used definition in this presentation negative reflection 
coefficients are found for phase distances 90° < Δφ ≤ 180°. 
Considering at first the theoretical case of equal cosine wave heights Hi = Hr (curve parameter 
Hr/Hi = 1), the reflection coefficient Cr = 1.0 at Δφ = 0° is attached to a perfect clapotis 
comprising of a loop at the point of reflection (e.g. at a vertical wall), whereas the phase 
difference Δφ = 180° delivers a negative reflection coefficient Cr = -1.0.  

 
Fig.21: Reflection coefficients Cr = f(Hr/Hi , Δφ) in the range of parameters   

0.1 ≤ Hr/Hi ≤ 1.0 and phase distances 0° ≤ Δφ ≤ 180°.  
 
The later, however, also stands for a perfect clapotis, but in this case with a perfect node 
existing at the point of reflection and thus a phase jump is produced. 
Considering both of the clapotis waves separately apart from their originating incident and 
reflected waves, e.g. their loops appear shifted by an angle of Δφ = 90° (π/2).  
Accordingly for Δφ changing from 0° to 180°, the transfer from the case of reflection without 
phase jump to the case of reflection with phase jump can be watched, meaning that the wave 
crest is reflected as a wave trough and vice versa.  
At the phase difference Δϕ = 90° there is Cr = 0, i.e. no reflection exist.  
Phase differences 0° < Δϕ < 90° and 90° < Δϕ < 180°, however, represent partial standing 
waves, which can be considered a mixture of progressive and standing waves. In this case 
imperfect nodes are located at distances 0 < ai < Li /4 from IP. 
Of course there are also partial standing waves at phase differences 0° and 180°, if parameter 
Hr/Hi < 1. 
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Hence the general conclusion to be drawn from Fig.21 consists in the statement that a phase 
difference between incident and reflected wave reduces the magnitude of the reflection 
coefficient and that the more the closer it is to 90° (π/2). 
When determining reflection coefficients from the envelopes of partial standing waves or 
from the above energy lines respectively, thus it is important to decide, which kind of partial 
clapotis really exist. So, according to the investigations on hand, one should act on the 
assumption that there exists negative reflection at the two smooth slopes 1:3 and 1:2 with 
mean reflection coefficients Cr ≈ -0.35 (Fig.10) and Cr ≈ -0.75, (Fig.19) respectively. 
Also imperfect negative reflection would exist at the hollow slope 1:3, expressed by the mean 
reflection coefficient Cr ≈ -0.2, (Fig.10), while there is imperfect positive reflection at the 
hollow structure inclined 1:2 with a mean reflection coefficient Cr ≈ +0.2 (Fig.19), due to the 
imperfect loop close to IP (see Fig18). 
A quantitative statement on how much the phase difference Δφ is responsible for the excellent 
result with this kind of hollow structure, is given exemplarily for a selected frequency range 
in chapter 7.  
Contrary without any information on the positioning of the partial clapotis with reference to 
IP, the reflection coefficient would be ambiguous. This is indicated e. g. for a value Cr = 0.2 
and phase differences 0° ≤ Δφ ≤ 90° by the markers on the curves in the lower part of Fig.22.  

 
Fig.22: Lower Family of Curves: Reflection coefficients Cr = f(Hr/Hi , Δφ);  

Upper Family of Curves: Absorption loss Ca
2 = f(Hr/Hi, Δφ). 

 
In the present case of non-inundated structures the linkage between reflection coefficient Cr 
and absorption coefficient Ca is normally established based on the energy conservation law as 
follows:  
The energy of incident waves Ei is equal to the sum of reflected energy Er and absorbed 
energy Ea. 

ari EEE +=         (8) 
With reference to the phenomenological model of wave breaking, specified in the 
introduction, it has to be clarified at this place that the fraction of reflected energy Er is 
originated right during the process of wave breaking and the fraction of absorbed energy Ea 
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comprises the total energy dissipation at breaking and at further interaction with the sloping 
structure, though the breaking process itself is induced by the structure. 
 
As wave energy is proportional to the square of the wave height, follows 

222
ari HHH +=        (9) 

and division by Hi
2  delivers the relationship between the coefficients squared, substituting  the 

respective energy fractions. 
221 ar CC +=        (10) 

Hence the upper family of curves in Fig.22 comprises the absorption losses 
Ca

2 = 1- Cr
2 = f(Hr/Hi, Δϕ).  

Simply it is shown here that according to the overall decrease of reflection coefficients (lower 
family of curves) with phase difference in the range 0° ≤ Δφ ≤ 90° there is an increase of the 
absorption losses up to 100%.  
 

 
Fig.23: Upper Family of Curves: Total absorption loss Ca

2 = f(Hr/Hi, Δφ). 
Lower Family of Curves: Fraction of absorption loss Cap

2 = f(Hr/Hi, Δφ)  
= Ca

2- Ca
2(Δφ=0) due to phase difference. 

 
In order to (further) clarify the effect of the phase difference, in Fig. 23 the total absorption 
loss Ca

2 = f(Hr/Hi, Δϕ) is contrasted by the rate of absorption loss Cap
2 = f(Hr/Hi, Δϕ)  

= Ca
2  - Ca

2(Δϕ=0) (lower family of curves), which will result, if  Ca0
2= Ca

2(Δϕ=0) is subtracted 
from the former.  
Thus in the case of Hr/Hi = 0.7 e.g. the phase difference Δϕ = 90° causes nearly half (49%) of 
the total absorption loss. The phase difference Δϕ = 30°, however, produces a balance as 
follows: 
Cr 2 + Ca0

2 + Cap
2 = 26% + 51% + 23% = 100%    (11) 

 
Then in this case the rate of absorption due to the phase difference (23%) is approximately 
equal to the reflected energy (26%), while absorption due to the ratio of wave heights is about 
twice that of the former two (51%).  
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7.  E s t i m a t e s   o f   t h e   P h a s e   D i f f e r e n c e   Δφ   I n f l u e n c i n g   
t h e   R e f l e c t i o n   C o e f f i c i e n t   Cr = f(Hr/Hi, Δφ) 

 
In the following estimates of the influencing values Hr/Hi and Δφ on  the reflection coefficient 
Cr = f(Hr/Hi, Δφ) are presented basing on Fig.21 and on particular results mentioned above.  
In doing so, reference is made to partial waves of frequency range 0.48Hz ≤ f ≤ 0.56Hz for 
slopes 1:3 and to partial waves of similar frequency range 0.4875Hz ≤ f ≤ 0.518750Hz for 
slopes 1:2.  
In the present case the initial condition of a phase jump (according to a phase difference 
Δφ = 180° between incident and reflected waves) may be accurate enough for both smooth 
slopes. Hence negative reflection exists for slope 1:3 with a reflection coefficient of Cr ≈ -0,41 
(see Fig.10 and marker in Fig.21) and for slope 1:2 with a reflection coefficient Cr ≈ -0,8 (see 
Fig.19 and marker in Fig.21).  
Provided that phase jumps Δφ < 180° also at partial reflection cause a node shift of 
Δφ = Δφ/2, the node shifts Δψ, to be taken from evaluations analog to Fig.18, can be attached 
to phase differences Δφ as follows: 
The node shift related to the point of origin is Δφ = 90°-Δψ. 
 
Hence Δφ = 2(90°-Δψ).     (12) 
 
With the reflection coefficient Cr = f(Hr/Hi, Δφ) known from a proper evaluation scheme, the 
parameter Hr/Hi  can be found from the family of curves of Fig.21 to be the curve running 
through point P(Δφ, Cr).  
 
As for the hollow slope 1:3, the node shift between the respective partial waves is Δψ= 18° 
leading to a phase difference Δφ = 144°. 
Together with Cr = f(Hr/Hi, Δφ) = -0.24 (Fig.08) follows Hr/Hi ≈ 0.30 (see marker in Fig.21). 
Hence the absolute reduction due to phase shift contained in the reflection coefficient is  
0.30-0.24 = 0.06 or 20%. 
 As for the hollow structure 1:2, the node shift between the respective partial waves is 
Δψ= 66° leading to a phase difference Δφ = 48°. 
Together with Cr = f(Hr/Hi, Δφ) = +0.17 (Fig.19) follows Hr/Hi ≈ 0.26 (see marker in Fig.21). 
Hence the absolute reduction due to phase shift contained in the reflection coefficient is  
0.26-0.17 = 0.09 or about 35%. 
 

8. C o n c l u s i o n s    
(H y p o t h e s i s  a n d  F u r t h e r  O b s e r v a t i o n s) 

 
The above findings especially with reference to Fig.21 are giving cause to a hypothesis “On 
the Reflection of Partial Standing Waves at Inclined Sloping Faces”. 
Contrary to the perfect standing wave at a vertical wall due to retro-reflection without a phase 
jump (i.e. positive reflection characterized by a node distance a = L/4 from the wall; Cr = 1.0; 
Δφ = 0o) there is another kind of retro-reflection with a phase jump at a wall inclined by a 
certain angle (i.e. negative reflection characterized by a node at the reflecting wall; Cr = -1.0; 
Δφ = 180o). Both types of clapotis should be considered as theoretical limiting cases of 
reflection excluding any friction effects at interfaces (water – air and water – solid 
respectively). 
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Moreover cases of partial reflection characterized by Cr = f(Hr/Hi = 1; 0o < Δφ < 180°) should 
be labelled as theoretic too, provided that energy dissipation processes not only exhibit a 
change of the reflected wave height but also a change of the reflected wave phase.  
All the remaining cases of partial reflection, however, with parameters 0 < Hr/Hi <1 and 
0o < Δφ < 180o are due to different kinds of energy dissipation processes. 
With respect to the shapes of breaking waves, it can be supposed in this context that not only 
the Iribarren number for surf similarity ξ = tanα/√(H/L) but also the phase difference Δφ may 
be important.  
At least at the steep slopes treated here, comprising smooth or nearly smooth surfaces, there 
exists a negative reflection, which, however, needs further specification with respect to the 
slope angle. 
The distinct negative reflection effect may be responsible for the plunging breaker type to 
occur. Moderate negative reflection occurred at hollow slopes producing collapsing breakers, 
while there was no distinct breaker type to be identified at big hollow cubes accounting for 
very low positive reflection coefficients.  
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